Exercise 7

Find $F^{\prime}(x)$ for the following integrals:

$$
F(x)=\int_{0}^{x}(x-t)^{3} u(t) d t
$$

Solution

The Leibnitz rule states that if

$$
F(x)=\int_{g(x)}^{h(x)} f(x, t) d t
$$

then

$$
F^{\prime}(x)=f(x, h(x)) \frac{d h}{d x}-f(x, g(x)) \frac{d g}{d x}+\int_{g(x)}^{h(x)} \frac{\partial f}{\partial t} d t
$$

provided that f and $\partial f / \partial t$ are continuous. In this exercise, $g(x)=0, h(x)=x$, and $f(x, t)=(x-t)^{3} u(t)$. Applying the rule gives us

$$
F^{\prime}(x)=0 \cdot 1-x^{3} u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{3} u(t) d t
$$

Therefore,

$$
F^{\prime}(x)=\int_{0}^{x} 3(x-t)^{2} u(t) d t .
$$

